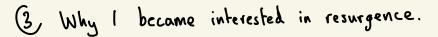
PARAMETRIC RESURGENCE AND LARGE N VORTEX COUNTING

SAMUEL CREW

Based on hep-th/2010.09732 and math. ca/2208.07290

Goals / Plan for talk

- U Story of two halves:
 - broad idea is to connect microstate counting + enumerative geometry.
 - 2) I will tell you about some work in 3d N=4 gauge theory.
 - Lightning review.
 - -> Hemisphere blocks + quasimap counting
 - 2d ADHM with MH = Hilb NC2 and Ads 4



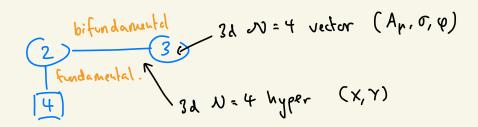
- → It is fun
- -) It is the natural place to study large N upfns.

(4) Resurgent trans-series with holomorphic parameters.

Interrupt me with qus!

Lightning Review of 3d N=4 Gauge Theory

- · Theory 7 preserving 8 supercharges Qaa.
 - -> Su(2) E Lorent 2. Su(2) H x Su(2) C R-symmetries.
- · T is Lagrangian and specified by gauge group G and quaternionic rep.
 - We will consider quiver gauge theories To w. Ro=ROR.



 \rightarrow Υ_G enjoye global flavour symmetry G_H (and G_C)

E.g. $(\mathbb{C}^{\times})^4$

BPS 200

Objects we can count or compute because they are supersymmetric = annihilated by some fraction of the Qs.

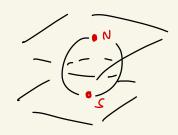
Today we will focus on vortices and vacua.

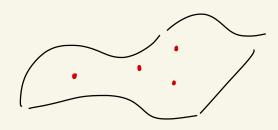
- · <u>Supersymmetric</u> <u>vacva</u> annihilated by all Ψ lo> = 0.

 To has degenerate moduli space of vacva.
 - → Mc Coulomb branch where vector multiplet scalars attain a vev (P, T)

 Receives quantum corrections from monopoler
 - \rightarrow M_H Higgs branch. Hypermultiplet scalars (X,Y) attain vevs. Purely classical. Geometrically is the Nakajima quiver M_Q associated to Q $M_H = H^{-1}(0) / G_C$
 - → First order perspective of 3d millor symmetry swaps MH => Mc
 7 => 7
- · ExAMPLE To = SOED[N]
 - $M_{H} = T^{*}P^{N-1}. \quad \text{Global symmetry} \quad G_{H} = (C^{*})^{N} \quad \text{and} \quad \text{k-symmetry} \quad C_{\xi}^{*}$ $(M_{c} = C[\text{monopoles}])$ $\left(\frac{\eta}{N}, \right)$
- · We will turn on masses for GH

 M & JH sufficiently generic to lift MH -1 MH





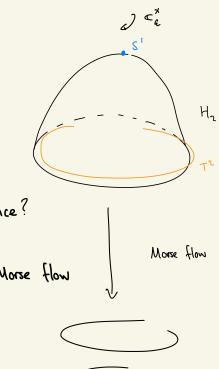
Boundaries

- · We will place To on a hemisphere geometry.
- · One may cut open 3-mfd pfn along a torus boundary.

 The question is what boundary condition do we give at finite distance?

-> We call this exceptional Dirichlet (there is a mirror 'Neumann' dual)

Labelled by Vacua Bor w.t. m



EXAMPLE

Hemisphere Block

· We compute the (flavoured) Witten index of states on Hz wirt B.

· Physical object - recipe for any To purely in terms of Higgs branch data.

Vortices

. One may compute the index by a path integral.

$$\frac{2}{2} = \int_{8c_s} (2\phi) e^{-c} \qquad \qquad \qquad \qquad \qquad \sum_{i=0}^{\infty} \int_{8c_s} (2\phi) \operatorname{modding}$$

. We may choose a localisation scheme Q s.t. Qp = 0 are vortices.

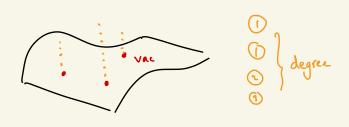
· Q-cohomology described by:
$$\overline{d} = \int_{\mathbb{R}^7} \operatorname{Tr} F \times_{1} Y \to \mathcal{J}_{0}^{+}$$
 at boundary vortex

-) This data defines the quasimap moduli space

. The path integral is then computing k-theoretic intersection theory of QM_{α}^{d} (= quantum k-theory of M_{H})

. In other words:
$$\frac{1}{2} = \text{tr}(-1)^{\epsilon} = \frac{1}{2} \chi_{G_H \times C_Q^*} \left(O_{G_M}^{ir}, G_M^{\tilde{A}} \right)$$
.

This may be further localised to fixed quasimaps:



EXAMPLE
$$T_{Q} = SQED[N]$$

$$M_{H} = T^{*}P^{N-1}. \qquad QM_{\alpha}^{d} = Q^{*}$$

$$\frac{1}{2} = \sum_{d>0} \int_{1}^{d} \prod_{i=1}^{N} \frac{(f \times i / \chi_{\alpha}; q)_{\alpha}}{(x_{i} \cdot (\chi_{\alpha}; q)_{\alpha})_{\alpha}}.$$

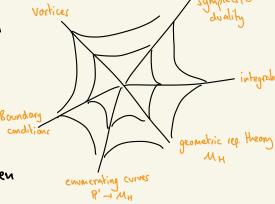
· To gives vast generalisation of q-hypergeometric functions. From now on thinks:

$$Z_{x} = \sum_{\text{degree}} \sum_{\text{degree}} \sum_{\text{degree}} f_{\text{rational}}(q, x = e^{m}, t)$$

What is the point?

Besides expanding the wonderful web of connections between 3d N=4 theories and enumerative geometry.

Our story is in contrast to a less rigorous approach to hole factorisation It is claimed that you on $R_s^2 \times S'$ can be expressed as a contour integral



. This amounts to the claim that $\chi(am_{\star}^{d},0)$ can be written

$$Z_{cx} = \frac{\sum_{degree}}{\sum_{degree}} \sum_{degree} \int_{frational} (q, x = e^{m}, t)$$

$$= \sum_{degree} g(residue) = \int_{degree} d(G cartan)$$

However this is not always possible (such an expression is a Neumann BC: and naive precipition needs to be modified.)

Important when we consider factorisation $\frac{2}{5^3} = \frac{2}{3} = \frac$

$$\frac{1}{2}$$
 ~ $\int dw e^{-\frac{1}{\varepsilon}S} + ... = \sum_{\delta S=0}^{\infty} \frac{1}{\sqrt{S^{\prime\prime}}} e^{-\frac{1}{\varepsilon}S}$

- Actually this works but for other reasons:

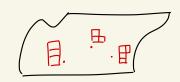
 $\partial S = 0$ will always be Bethe eq. of corresponding integrable system but there is not really a contour integral.

-> Why does this matter?

The Hilbert Scheme

· let us consider a special To given by:

$$\mathcal{M}_{H} = Hilb^{N}(\mathbb{C}^{2}) \longrightarrow Sym^{N}\mathbb{C}^{2}$$



Fixed points are $|\lambda| = N$ and vortices (GM_{λ}^{T}) are plane partitions. $(2_{\lambda}' counts')$ there)

- · This theory flows in the IR to the worldvolume theory on a stack of N M2-branes.
 - -> If has an AdSq holographic duct.
 - \rightarrow Certain AdS& BH entropy can be recovered from the index $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ when N (gauge group rank) is large.
- · If one applies a naive integral saddle point approach one finds.

$$Z_{\lambda} = \int_{\Gamma_{\lambda}}^{1} dw e^{-S/\Sigma} + ... = \frac{\sum_{\lambda} \frac{1}{\sqrt{s''}}}{\sum_{\lambda} \frac{1}{\sqrt{s''}}} e^{-\frac{S}{\lambda}/\varsigma} + ... (q = e^{\varsigma})$$

$$= \frac{N^{\frac{3}{2}}}{e^{\frac{N^{\frac{3}{2}}}{2}}} \sqrt{\Delta_1 \Delta_2 \Delta_3 \Delta_4} \quad \text{where} \quad M = e^{\Delta} \text{ are global symmetries.}$$

- . This is the correct entropy functional but lots of questions with this calculation. Three big ones are:
 - (1) There is no well-defined integral for all λ . How to make sense of a large N soddle? —) There are most likely more.
 - (2) There is a trans-series structure $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{N}\right)^{\frac{1}{2}} + \frac{1}{2} + \frac{1}$
 - -> Can we decode this trans-series? Physics of subleading corrections?
 - -) Some conjectures that s-terminates at large N.
 - (3) Is there interesting wall crossing / Stober phenomena as masses are varied.
 - · Resurgence is a tool to study such questions.

Singular ODEs and lines

- . Whilst there is no integral formula for 2x, there is an ODE at work that annihilates $P \cdot 2x = 0$.
- . This arises as an action of charged Wilson lines at the tip of the hemisphere

$$0.2_{\lambda} = \partial_{m}.2_{\lambda}$$

- . One can use the algebra of line operators $\{0; \}$ to construct an action that annihilates 2x $p_0 \cdot 2_x = 0$
- · Geometrically these are relationships between envinerative counts w. k. theoretic descendants \mathcal{X} (GM, O;) \rightarrow c.f. Witten conjecture. This is a kind of quiver variety version

EXAMPLE To = SQED[N] (a good toy model for N and s limits - but no holography)

$$Z_{\lambda} = Z_{\lambda} (q,t,M,z)$$
 and $P = \prod_{i=1}^{N} (\epsilon \partial_{i} + M_{i}) - \zeta^{N}$

N.B. One can land on this theory by "Higgsing" a 5d theory.

P is then the (quantised) SW spectral curve of the 5d theory.

- . We will use resurgence to analyse solutions to such singularly perturbed ODEs.
 - A full resurgent sol" is the next best thing to having an integral to perform steepest descent analysis.
 - -> Non standard however. P is not single variable and depends on additional hd parameters (masses)
 - -) I have spent a year in this resurgence rabbit hole. I have emerged and there is some really fun mathematics to talk about.

Holomorphic resurgence

3d N=4 gauge theory symplectic duality, at large N.

Divergent Series

- · Warm-up example: $x^2 \frac{df}{dx} f = -x$.
 - -> Seek a naive perturbative expansion $f(x) = f_0 + xf_1 + x^2f_2 + ...$
 - \rightarrow Will find $f_{a}(x) = \sum_{n>0} n! x^n$ This is nonsense.
 - -) Taylor's thm says $|f(x) f_n(x)|$ is small for N fixed x small $\in A \subset C_x$
- · Idea of Borel resummation is to assign an analytic value to fa(x).
 - -> First define the Borel transform $f_{g}(w) := \sum_{n>0} \frac{f_{n}}{n!} w^{n}$. This converges.
 - -) Now recall $n! = \int_{0}^{\infty} dw \ w^{n} e^{-w}$. $f(w) := \int_{0}^{\infty} dw \ e^{-w/x} f_{g}(w)$ has the asymptotics $f_{\infty}(x)$ but converges!

· This procedure is called Borel resummation.

Divergent
$$f_{a} = f_{1} + xf_{2} + xf_{3} + \cdots$$

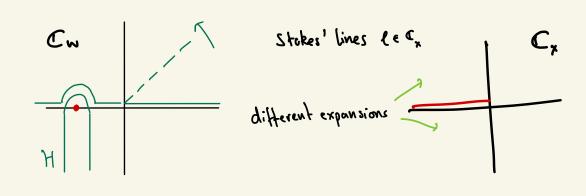
Borel transform
$$f_{g}(w) := 2 \frac{f_{m}w^{n}}{n!}$$
 $f(x) = \int_{a}^{b} dw e^{-w/x} f_{g}$

· But, surprise! for has a pole. In fact for (w) = 1 + w.

-) Consider the Borel sum
$$f(x) = \int_{r}^{dw} e^{-w/x} f_{g}(w)$$
.

$$\int_{H}^{dw} e^{-w/x} \frac{1}{1+w} = e^{1/x}$$

Thus fa(x) - fa(x) + e IX across le Cx



This is Stokes phenomena.

General Idea

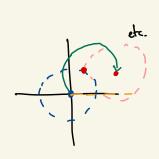
· Divergent perturbative series f(x) ~ f. + f.x + f.x2 + ...

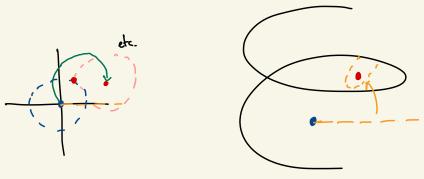
Holomorphic germ
$$f_g(w) = \frac{f_0}{0!} + \frac{f_1}{1!}w + \frac{f_2}{2!}w^2 + ...$$

. $f_g(w)$ may be analytically continued (Defines Riemann surface $\Sigma(f)$)

-) Singularities of Z(F) determine non-perturbative contributions via $\int_{Z(F)} d\lambda_x \sim f(x)$

. Stokes lines occur when the contour snags on singularities.





Resurgence 1/3

Idea: Extend algebraic perturbation theory from co+ ax + c2x2+ ... to include from monomials:

We will discuss height 1, log-free frans-series:

Ecalle's theory of resurgence is a correspondence:

Resurgence 2/3

Recurring idea: (boring fact)

If $f_g(w): C_w \to C_w$ is a holomorphic function with a single nearest singularity at $w=\rho$ of the form:

then the coefficients in the local power series $f(w) = a_0 + a_1w + a_2w + \cdots$ enjoy the asymptotics:

$$\Gamma(n+1)$$
 $a_n \sim \frac{\Gamma(n+\alpha)}{p^n} \left(\frac{b_0}{\Gamma(\alpha)} + \frac{p}{n+\alpha-1} \frac{b_1}{\Gamma(\alpha-1)} + \cdots \right)$

· Relatively mondance fact becomes remarkable when passed through the Ecollé correspondence:

 $n \neq a_0, a_1, a_2, \dots$ 3 some perturbative coefficients of $f_a(x)$.

 $N = \int_{3}^{4} dw e^{-w(x)} f_{B}(w)$, on a Stoker line, the contour x snags on a singularity the perturbative series f_{a} recieves an extra contribution from the Hankel contour:

$$= \int_{\mathcal{H}} dw \, e^{-w/x} \left(\left| -\frac{w}{p} \right|^{\alpha} \left(b \cdot + b \cdot \left(\left| -\frac{w}{p} \right| + \dots \right) \right)$$

$$C_{-function}$$

$$\Gamma_{-} \text{ function} = \frac{2\pi i}{X^{\alpha+1}} e^{-\beta X} \left(\frac{b_0}{r[\alpha]} + \frac{b_1 X}{r[\alpha-1]} + \dots \right)$$

Very strange: Feynman diagram expansions know about instantons.

· Hope to use (infinite dim. generalisations of) this idea to define non-perturbative QFT.

Divergent series know all! (not a surprise in C!)

Resurgence 3/3

. This structure persists (resurges!)

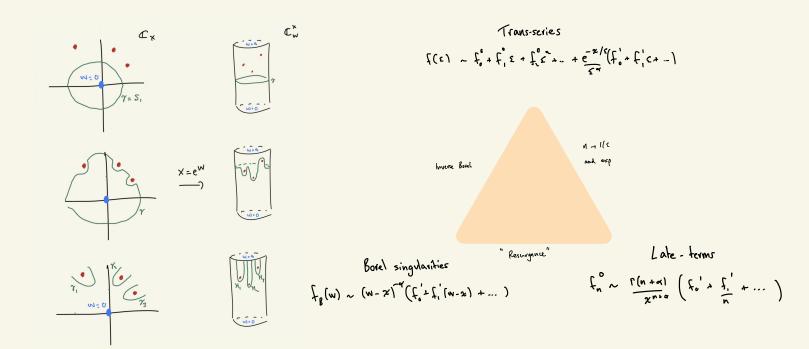
Holomorphic side

Perturbative side

whative side
$$y(x) = C_0^2 + C_1^2 x + ... + e^{-2c_1/c}(C_1^2 + C_1^2 x + ...) + e^{-2c_1/c}(C_2^2 + C_1^2 x + ...)$$

. This structure can be seen purely from the 1/n asymptotics of con.

- In fact we show
$$C_g(w) = f_g(ew)$$



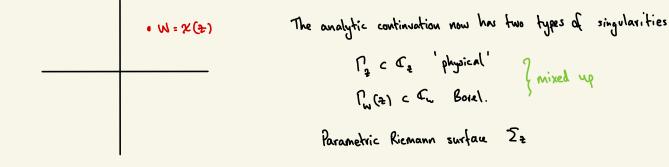
Upgrade!

· Our problem in enumerative geometry is of the general form: P.f = 0 with
$$P = \left(\sum_{n=1}^{\infty} \frac{d}{dt} \right)^{n} + g\left(m_{1}, \dots, m_{n} \right)^{n}$$

- -> We are interested in the asymptotic structure as £ -10
- Compared with last slides we now have additional hole variables = {m, t}
- · Trans-series expansion now takes the form:

$$f(s;t) = C_{o}(t) + sc_{1}(t) + s^{2}C_{1}(t) + ... + e^{\pi(t)/s}(c'(t) + sc'(t) + ...)$$

- We see a problem. What if (:(2) have singularities?
- a Classical idea of boundary layers we explain this in resurgence context.
- . The Borel germ $y_g(w; x) := \sum_{n=0}^{\infty} \frac{C_n(x)}{n!} w^n$ now depends on holomorphic parameters.



. If we have a singular ODE e.g. $P = \frac{d}{dt} + G(t)$ then we may seek a solution in the Borel plane: $y(t, c) = \int dw \, e^{-w/c} \, y_g(w, t)$

This yields a complex PDE in the Borel plane P-> PB = 2m + G(2) 2.

- · Introduce the idea of a 'template trans-series!
 - \rightarrow If we know the locations of Borel singularities $\chi(z) \in T_{\omega}$ and the local expansion then we recover the trans-series and Stokes' lines.
 - -) We make a singularity aniate $y_{g}(w, t) = (w x(t))^{-\alpha} (c'_{s}(t) + (w x(t))c'_{s}(t) + ...)$
 - -> Homogeneity of PB => Obtain ODEs for trans-series components C:(2)
 - -> This is the template. How do we fill it with constants?

Inner-Outer Matching

- . Motto is a kind of 'Taylor expansion for trans-series'
- . Where to set initial data for $\{C_j^i(z)\}$? Γ_z is a distinguished set of points in C_z .
- Instead of expanding about $\Gamma_{\omega}(2)$ let us expand about Γ_{2} . For each $\chi(4)$ let $S = \frac{\omega}{\chi}$ $\rightarrow V_{B}(S,2) = 2^{-B}(\gamma_{\omega}(S) + 2\gamma_{\omega}(S) + 2^{2}\gamma_{\omega}(S) + \cdots)$
 - Form of the operator PB means 4: is coupled only to itself.
 - " dy, + 40 = 0". Set of "constant" problems of type discussed previously.
- . We may then compare the two expansions.

$$y_{\beta}(s, 2) = (1-s)^{-\alpha}(a_{\delta}(2) + (1-s)a_{\delta}(2) + ...)$$

- The resurgence lemma then gives a fun matching procedure for the a; (2) near P2.

$$a_{\circ}^{\circ}$$
 a_{1}° a_{2}° ... a_{\bullet}° a_{1}° a_{2}° ...

- · We now have all the ingredients of the trans-series.
- · Q: What is the geometrical interpretation (QM counts) of the Borel PDE and this procedure?

 Q: Alien calculus?
- . This structure applies to singularly perturbed PDEs C2, x C2
 - → P2 < C2, x C2, has some geometry
 - PB propogates P2 on characteristics C2 x Cw
 - -> Inner-Outer matching 200ms in Recursive structure.

Summary_

- · We define a physical object the hemisphere block with a finite distance boundary condition.

 Boundaries, Vermas and Factorisation Bullimore, SC, thang
- For $T_{\phi} = \text{Hilb}^N(\sigma^2)$ the entropy of certain AdSq BHs can be recovered but not from direct saddle point analysis rather quantum toroidal integrability. Geometric Aspects of 3d N=4 Gauge Theory SC
- · Resurgence is the natural tool to study the interplay of the Cardy (q-1) and holographic $(N\rightarrow 20)$ limits.
- · We develop new tools to deal with additional hdc (mass parameter) dependence.

 Resurgent Aspects of Exponential Asymptotics SC and Trinh
- · It remains to put these pieces together and study resurgence of the quantum differential eq of $2CQM_{2}^{d}$)

Thank you! =