Draft: August 23, 2022

Resurgence in Quantum Field Theory

SC

ABSTRACT: Outline of topics covered in lecture series on resurgence in quantum field theory at Tokyo Metropolitan University Summer 2022. Full handwritten notes are also available.

\mathbf{C}	onte	nts	
1	Lecture 1		2
	1.1	Overview	2
	1.2	The plan	2
	1.3	Introduction	2
	1.4	What is quantum field theory?	2
2	2 Lecture 2		3
	2.1	Resurgence for physicists	3
	2.2	Quantum field theory upgrade	3
	2.3	Lighting quantum mechanics review	3
3	Lecture 3		3
	3.1	Fermions and supersymmetry	3
	3.2	Resurgence in supersymmetric quantum mechanics	3

1 Lecture 1

1.1 Overview

- Interdisciplinary topic. I will assume zero knowledge of either area.
- Why is resurgence studied in the context of quantum field theory?
- What can quantum field theory bring to resurgence? A lot of examples.
- Deeper connections BPS state counting, spectral networks etc.

1.2 The plan

- Broad discussion (a fairy tale story) of connections between resurgence and quantum fields
- Introduction to quantum field theory with concrete examples

Quantum mechanics as a qft

• Review of resurgence and perturbation theory

Ecallé's correspondence and Borel resummation

• Applications (unlikely to have time to cover all)

BPS states in 4d supersymmetry

Large N matrix models

Dunne and Unsal's Cheshire cat resurgence

Exactly soluble Yang-Mills at large N

1.3 Introduction

- Transseries
- Classical field theory
- Yang-Mills gauge theory and instantons
- Feynman diagrams
- Supersymmetry
- BPS state counting and exact WKB

1.4 What is quantum field theory?

- Ingredients of QFT
- 0d Feynman diagram example

2 Lecture 2

2.1 Resurgence for physicists

- Correspondence between complex analysis and asymptotics
- Transseries and resurgent functions
- Resurgence lemma

2.2 Quantum field theory upgrade

- One dimensional QFT = quantum mechanics
- $\bullet\,$ Boundaries and Hilbert spaces
- Tunnelling

2.3 Lighting quantum mechanics review

- States and measurements
- Observables
- Symmetries
- Transition amplitudes
- Some examples
- The partition function with harmonic oscillator example

3 Lecture 3

3.1 Fermions and supersymmetry

- Structure of supersymmetric Hilbert spcae
- Witten index
- Supersymmetric path integral
- 1d quantum mechanics example
- Localisation principle

3.2 Resurgence in supersymmetric quantum mechanics

References